AI的张良计与过墙梯

资讯 5年前
1.21K
AI的张良计与过墙梯

在今年的3·15上,果不其然AI被点名了。抛去属于“质量问题”的虚假智能产品以外,更引人关注还要数“智能骚扰电话”。相关报道提到,一些所谓的“大数据企业”通过WiFi探针识别到连接无限网络的手机。然后,在用户完全不知情的情况下获取用户的私人MAC信息,再将MAC转换为手机号码,与大数据相互“匹配”,再利用仿真人的AI机器人进行外呼。

这其中,AI参与的环节其实只有最后的外呼一步。其原理和智能语音客服没有差别,都是通过语音生成技术替代人力,实现广泛的高效骚扰。

被曝光后,很多人开始讨论起AI的伦理问题、AI的负面效应等等。

可我们只想说一句:这才哪儿到哪儿啊!

AI技术有几个显著的特点,比如足以替代人类的超高识别效率,又比如对于图像、声音强大的模仿能力和生成能力,加上日益提升的理解能力。这一切足以让AI成为“天生的骗子”,这一次3·15所揭露出的,仅仅是冰山一角而已。

砍平门槛:AI如何让我们的世界门户大开?

今天,我们就可以从AI的几项能力上来看看,那些已经出现在我们身边,已经即将到来的AI行骗方式。

首先是高效的识别能力。

利用机器识别出一段语音、一张图片或是一张面孔,本来与行骗一事关联不大。但这种能力破解的是一种以效率增加行骗作恶成本的保护机制。

就拿发骚扰邮件、骚扰短信这件事来说,当同一个IP的行为太过频繁时,验证码机制的加入可以拖缓发送效率,让行骗者无法使用脚本进行自动发送。

而AI图像识别的出现,就彻底破坏了这一机制。在2017年曝光过的“1·03”网络“黑产”系列专案中,黑客就是用AI的图像识别能力识别图片验证码,识别正确率高达95%以上。在此平台被打掉的前3个月,已经提供验证码识别服务259亿次。

如此一来,行骗成本和难易程度都被大大降低,为后续的行为创造了极大的空间。

信任崩塌:当AI可以制造幻觉

在踩进门槛之后,AI的学习能力便成为了最大的威胁。当眼见不能为实,耳听也可能为虚时,我们原本能够应用上的验证方法便会立即失效。

这其中有最臭名昭著的AI换脸:去年曾经有开发者在社区中分享自己利用深度神经网络将影片中女主角脸部替换的过程,只需要在视频网站上找到替换对象各个角度的照片和视频,进行数据标注,再利用TensorFlow上模型对原视频女主的表情、口型进行学习,就可以在数据库中找到对应的图像和视频进行替换。

前几天惊艳四座的“杨幂换脸朱茵版黄蓉”,也应用的是类似的技术。这便意味着,也许很快在我们接到视频电话时,连对方熟悉的相貌都不能相信。

也许大家会觉得,虽然AI能够攻破内容,但视频、电话等等整个沟通过程还是相对安全的。可实际上,通过对语音的模仿在微信上进行诈骗的事件已经开始发生在我们身边。

去年的燕赵都市报曾经报道过一桩案件,一位女士在微信上接到父亲的微信消息,称需要借款,该女士要求父亲发送语音验证,结果自己听到的却是犯罪分子通过语音生成技术模仿的声音。

而且语音模仿的门槛要比图像模仿的门槛低很多,就拿科大讯飞曾在2018年展示过的声纹技术识别来说,只需要一分钟的语料,就能够惟妙惟肖的模仿出对方的声音。

© 版权声明

相关文章