AI+隐私计算如何在未来掀起商业浪潮?
隐私计算在于实现数据安全流动,是AI突破发展瓶颈的密钥,两者融合需要解决什么问题、在未来产生哪些变化?至此,隐私数据安全专栏特邀光之树,深入探讨AI+隐私计算,如何向智能时代开疆拓土。
算力说
近年来,随着算力提升与数据流动,人工智能持续迭代,其落地场景与应用领域愈加丰富,赋能包括新基建、工业在内的多个重要板块。AI技术加速前进离不开海量数据驱动,日益激增的数据需求使数据安全与隐私保护变得尤为迫切。
隐私计算在于实现数据安全流动,是AI突破发展瓶颈的密钥,两者融合需要解决什么问题、在未来产生哪些变化?至此,隐私数据安全专栏特邀光之树,深入探讨AI+隐私计算,如何向智能时代开疆拓土。
在近日召开的世界人工智能技术的融合,将逐步解决。
2 如何加大AI应用纵深,实现“边缘智能”?
通信网络基础设施建设是新基建的核心构成之一,其涵盖的包括5G、物联网、工业互联网、卫星互联等领域,也为AI应用提供了良好的纵深空间。
一方面这些技术都使得AI可以利用深入场景中的数据,例如智能设备多种传感器可以为模型补充关于明暗程度、运动速度、甚至温度、湿度等数据,这使得我们可以构建起以“情景”为基本响应单位的AI能力,从而提供最贴合特定情景的智能服务。
另一方面, AI还将可以深入到“端侧”、“边缘侧”,在最靠近数据的地方完成训练和预测,在提升AI实时性和个性化程度的同时,还能充分利用泛在的算力,节省集中式算力的消耗。
这些构想在实践中也许会遇到诸多困难。
以智慧农业为例,如何保证土壤探针等设备采集数据的真实和不被篡改?如何高效整合利用目前分散在政府、科研院所、田间地头、产供销链条中各个主体的农业大数据?如何使产业链各参与者都能信任AI的预测结果?等等,都曾是实现“边缘智能”所面临的障碍。
相关文章
热门网址
-
19打开,有戏
时间线
热门标签
热门工具
Apple Store
扫码加公众号
本站内容源自互联网,如有内容侵犯了你的权益,请联系删除相关内容,联系邮箱:youmao@neone.com.cn
© 2010 - 2024 | 沪ICP备16045468号-5