基于域相关的图像增强
介绍当在图像上训练深度神经网络模型时,通过对由数据增强生成的更多图像进行训练,可以使模型更好地泛化。常用的增强包括水平和垂直翻转/移位、以一定角度和方向(顺时针/逆时针)随机旋转、亮度、饱和度、对比度和缩放增强
介绍当在图像上训练深度神经网络模型时,通过对由数据增强生成的更多图像进行训练,可以使模型更好地泛化。常用的增强包括水平和垂直翻转/移位、以一定角度和方向(顺时针/逆时针)随机旋转、亮度、饱和度、对比度和缩放增强。Python中一个非常流行的图像增强库是albumentations,通过直观的函数和优秀的文档,可以轻松地增强图像。它也可以与PyTorch和TensorFlow等流行的深度学习框架一起使用。
域相关的数据增强
直觉
背后的想法来自于在现实中可能遇到的图像。例如,像雪或雨滴这样的增强是不应该在x射线图像中发现的增强,但胸管和起搏器是可以在x射线图像中发现的增强。这个想法从何而来改变了Roman (@ nroman on Kaggle)为SIIM-ISIC黑色素瘤分类比赛做增强的方法。增强的一个片段如下所示:
原始图像(左上方)和头发增强图像(右上方)此文确实在我们的模型训练中使用了他的增强函数,这有助于提高我们大多数模型的交叉验证(CV)分数。想说的是,这种形式的增强可能在我们的最终排名中发挥了关键作用!从那时起,使用头发(或一般的人工制品)来增强图像数据的想法在我参加的后续比赛中非常接近,并尽可能地加以应用。特别是,该方法被推广并应用于全球小麦检测、木薯叶病分类挑战赛。
昆虫增强
正如标题所示,这种方法包括用昆虫增强图像。这可以是数据中的一种自然设置,因为昆虫通常在空中或地面上被发现。在本例中,在木薯和全球小麦检测竞赛中,蜜蜂被用作增强叶片图像时的首选昆虫。以下是增强图像的外观示例:蜜蜂在叶子周围飞翔的增强图像
我们还可以使用掩码形式,导致图像中出现黑点(类似于相册中的脱落),即没有颜色和黑色的蜜蜂:增强图像,黑色/黑色蜜蜂围绕树叶飞行
以下以Albumentations风格编写的代码允许增强函数与来自Albumentations库的其他增强函数一起轻松使用:
from albumentations.core.transforms_interface import ImageOnlyTransform
class InsectAugmentation(ImageOnlyTransform):
"""
将昆虫的图像强加到目标图像上
-----------------------------------------------
参数:
insects (int): 昆虫的最大数量
insects_folder (str): 昆虫图片文件夹的路径
"""
def __init__(self, insects=2, dark_insect=False, always_apply=False, p=0.5):
super().__init__(always_apply, p)
self.insects = insects
self.dark_insect = dark_insect
self.insects_folder = "/kaggle/input/bee-augmentation/"
def apply(self, image, **kwargs):
"""
参数:
image (PIL Image): 画昆虫的图像。
Returns:
PIL Image: 带昆虫的图像。
"""
n_insects = random.randint(1, self.insects) # 在这个例子中,我用1而不是0来说明增强效果
if not n_insects:
return image
height, width, _ = image.shape # 目标图像的宽度和高度
insects_images = [im for im in os.listdir(self.insects_folder) if 'png' in im]
for _ in range(n_insects):
insect = cv2.cvtColor(cv2.imread(os.path.join(self.insects_folder, random.choice(insects_images))), cv2.COLOR_BGR2RGB)
insect = cv2.flip(insect, random.choice([-1, 0, 1]))
insect = cv2.rotate(insect, random.choice([0, 1, 2]))
h_height, h_width, _ = insect.shape # 昆虫图像的宽度和高度
roi_ho = random.randint(0, image.shape[0] - insect.shape[0])
roi_wo = random.randint(0, image.shape[1] - insect.shape[1])
roi = image[roi_ho:roi_ho + h_height, roi_wo:roi_wo + h_width]
# 创建掩码和反掩码
img2gray = cv2.cvtColor(insect, cv2.COLOR_BGR2GRAY)
ret, mask = cv2.threshold(img2gray, 10, 255, cv2.THRESH_BINARY)
mask_inv = cv2.bitwise_not(mask)
# 现在黑掉的区域是昆虫
img_bg = cv2.bitwise_and(roi, roi, mask=mask_inv)
# 从昆虫图像中只选取昆虫区域。
if self.dark_insect:
img_bg = cv2.bitwise_and(roi, roi, mask=mask_inv)
insect_fg = cv2.bitwise_and(img_bg, img_bg, mask=mask)
else:
insect_fg = cv2.bitwise_and(insect, insect, mask=mask)
# 添加
dst = cv2.add(img_bg, insect_fg, dtype=cv2.CV_64F)
image[roi_ho:roi_ho + h_height, roi_wo:roi_wo + h_width] = dst
return image
如果你希望使用黑色版本,请将dark_insect设置为True。在这个Kaggle笔记本中可以找到一个示例实现
使用针的增强
在这种方法中,使用针来增强图像,例如可以是x射线图像。以下是增强图像的外观示例:x光片左侧带针头的增强图像
类似地,我们可以使用黑色版本的针,从而生成以下增强图像:x射线两侧带有黑色/黑色针头的增强图像
作为上述扩展模块的代码片段如下所示:
def NeedleAugmentation(image, n_needles=2, dark_needles=False, p=0.5, needle_folder='../input/xray-needle-augmentation'):
aug_prob = random.random()
if aug_prob < p:
height, width, _ = image.shape # 目标图像的宽度和高度
needle_images = [im for im in os.listdir(needle_folder) if 'png' in im]
for _ in range(1, n_needles):
needle = cv2.cvtColor(cv2.imread(os.path.join(needle_folder, random.choice(needle_images))), cv2.COLOR_BGR2RGB)
needle = cv2.flip(needle, random.choice([-1, 0, 1]))
needle = cv2.rotate(needle, random.choice([0, 1, 2]))
h_height, h_width, _ = needle.shape # 针图像的宽度和高度
roi_ho = random.randint(0, abs(image.shape[0] - needle.shape[0]))
roi_wo = random.randint(0, abs(image.shape[1] - needle.shape[1]))
roi = image[roi_ho:roi_ho + h_height, roi_wo:roi_wo + h_width]
# 创建掩码和反掩码
img2gray = cv2.cvtColor(needle, cv2.COLOR_BGR2GRAY)
ret, mask = cv2.threshold(img2gray, 10, 255, cv2.THRESH_BINARY)
mask_inv = cv2.bitwise_not(mask)
# 现在黑掉的区域是针
img_bg = cv2.bitwise_and(roi, roi, mask=mask_inv)
# 只选取针区域。
if dark_needles:
img_bg = cv2.bitwise_and(roi, roi, mask=mask_inv)
needle_fg = cv2.bitwise_and(img_bg, img_bg, mask=mask)
else:
needle_fg = cv2.bitwise_and(needle, needle, mask=mask)
# 添加
dst = cv2.add(img_bg, needle_fg, dtype=cv2.CV_64F)
image[roi_ho:roi_ho + h_height, roi_wo:roi_wo + h_width] = dst
return image
请注意,以上内容不是Albumentations格式,不能直接应用于常规Albumentations增强。必须进行一些调整,使其与上述昆虫/蜜蜂增强中的格式相同。但变化应该很小!同样,如果你希望使用黑色版本,请将dark_Piners设置为True。在我的Kaggle笔记本中可以找到一个示例实现。
实验结果
总的来说,局部CV结果有所改善,大部分略有改善(如0.001–0.003)。但在某些情况下,使用这种增强方法在训练过程中“失败”。例如,在全球小麦检测竞赛中,任务涉及检测小麦头部,即目标检测任务。尽管进行了大量的超参数调整,但使用原始蜜蜂的蜜蜂增强导致训练验证损失波动很大。虽然使用增强器确实提高了CV,但可以说这确实是一个幸运的机会。使用仅保留黑色像素的增强被证明在应用程序的各个领域是稳定的。特别是,CV的提升是实质性的,也是一致的。到目前为止,尚未找到蜜蜂数量增加导致不同epoch之间出现这种训练结果的原因,但有一种假设是蜜蜂的颜色接近某些麦头,因此“混淆”了检测算法,该算法随后在同一边界框内捕获麦头和最近的蜜蜂。在一些边界框预测中观察到了这一点,但没有足够的观察案例可以肯定地说这一假设是正确的。在任何情况下,还应该考虑图像属性(颜色)是否具有接近目标(例如小麦头)的分布。另一方面,使用针的增强被证明(原始及其黑色/黑色版本)都相对稳定。在该示例中,预测的目标虽然在颜色分布上相似,但可能具有明显的特征(例如,胸管看起来与针头大不相同),因此分类算法不会混淆针头是否是正确的目标。