用Pytorch训练神经网络

资讯 2年前
721
用Pytorch训练神经网络

本文目标是如何使用Pytorch以尽可能短的方式从图像中预测颜色、填充级别等连续属性。我们将学习加载现有网络,修改它以预测特定属性,并用不到40行代码(不包括空格)对其进行训练。

Standart神经网络通常专注于分类问题,比如识别猫和狗。然而,这些网络可以很容易地进行修改,从图像中预测连续属性,如年龄、大小或价格。

首先,让我们导入软件包并定义主要的训练参数:

import numpy as np

import torchvision.models.segmentation

import torch

import torchvision.transforms as tf

Learning_Rate=1e-5

width=height=900

batchSize=1

学习率:是训练过程中梯度下降的步长。

宽度和高度是用于训练的图像的尺寸。训练过程中的所有图像都将调整为该大小。

batchSize:是将用于每次训练迭代的图像数。

batchSize,width,height将与训练的内存需求成比例。根据硬件的不同,可能需要使用较小的批处理大小来避免内存不足问题。

请注意,由于我们只使用单一大小的图像进行训练,因此训练后的网络可能仅限于使用这种大小的图像。

接下来,让我们创建训练数据。我们想做一个简单的演示,所以我们将创建一个用白色填充到一定高度的图像。该网络的目标是预测被白色覆盖的图像的比例。这可以很容易地用于从真实图像预测更复杂的属性,如其他教程所示。

例如:

在上图中,我们希望网络预测为0.47,因为47%的图像填充为白色。在底图中,我们希望网络预测0.76,因为76%的图像填充为白色。

在实际环境中,你可能会从文件中加载数据。在这里,我们将动态创建它:

def ReadRandomImage(): 

  FillLevel=np.random.random() # Set random fill level

  Img=np.zeros([900,900,3],np.uint8) # Create black image 

  Img[0:int(FillLevel*900),:]=255 # Fill the image  

  transformImg=tf.Compose([tf.ToPILImage(),  

tf.Resize((height,width)),tf.ToTensor(),tf.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) # Set image transformation 

Img=transformImg(Img) # Transform to pytorch

return Img,FillLevel

在第一部分中,我们创建图像:

FillLevel=np.random.random() # Set random fill level

Img=np.zeros([900,900,3],np.uint8) # Create black image

Img[0:int(FillLevel*900),:]=255 # Fill the image

第一行选择0–1之间的随机数作为填充级别。

Img=np.zeros([900,900,3])创建一个大小为900X900的矩阵,填充零作为图像。这相当于一个高度和宽度为900的黑色图像。图像有3个对应于RGB的通道。

接下来,我们用白色填充图像的顶部,直到填充水平线。

Img[0:int(FillLevel*900),:]=255

现在我们创建了图像,我们对其进行处理并将其转换为Pytorch格式:

transformImg=tf.Compose([tf.ToPILImage(),  

tf.Resize((height,width)),tf.ToTensor(),tf.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) # Set image transformation

这定义了一组将应用于图像的变换。这包括转换为PIL格式(转换的标准格式),以及调整大小和转换为PyTorch格式。

对于图像,我们还通过减去平均值并除以像素强度来标准化图像中像素的强度。

对于我们的简单图像,标准化和大小调整并不是真正需要的,但这些转换对于真实图像很重要。

接下来,我们将变换应用于图像:

Img=transformImg(Img)

对于训练,我们需要使用一批图像。这意味着在4D矩阵中,多个图像相互叠加。我们使用以下函数创建batch:

def LoadBatch(): # Load batch of images
          images = torch.zeros([batchSize,3,height,width])
          FillLevel = torch.zeros([batchSize])
          for i in range(batchSize):
              images[i],FillLevel[i]=ReadRandomImage()
          return images,FillLevel

第一行创建一个空的4d矩阵,该矩阵将存储尺寸为[batchSize,Channel,height,width]的图像,其中Channel是图像的层数;这是RGB图像的3。下一行创建一个数组,其中存储填充级别。这将作为我们训练的标签。

下一部分使用前面定义的ReadRandomImage函数将图像集和填充级别加载到空矩阵:

for i in range(batchSize):
           images[i],FillLevel[i]=ReadRandomImage()

现在我们可以加载数据了,是时候加载神经网络了:

device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')

Net = torchvision.models.resnet18(pretrained=True) # Load net

Net.fc = torch.nn.Linear(in_features=512, out_features=1, bias=True)

Net = Net.to(device)

optimizer = torch.optim.Adam(params=Net.parameters(),lr=Learning_Rate)

第一部分是确定计算机是否有GPU或CPU。如果有Cuda GPU,训练将在GPU上进行:

device = torch.device(‘cuda’) if torch.cuda.is_available() else torch.device(‘cpu’)

对于任何实际数据集,使用CPU进行训练都非常缓慢。

接下来,我们加载用于图像分类的网络:

Net = torchvision.models.resnet18(pretrained=True)

torchvision.models包含许多有用的图像分类模型。Reseet18是一个轻量级的分类模型,适用于低资源训练或简单的数据集。对于更难的问题,最好使用resenet50(请注意,数字指的是网络中的层数)。

通过设置pretrained=True,我们在Imagenet数据集上加载带有预训练权重的网络。

在学习新问题时,最好从预训练的模型开始,因为它允许网络使用以前的经验并更快地收敛。

我们可以看到我们刚刚通过print(Net)查看网络的所有结构和所有层:

print(Net)

(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))

(fc): Linear(in_features=512, out_features=1000, bias=True)

这会按使用顺序打印层。

网络的最后一层是线性变换,输入512层,输出1000层。1000代表输出类的数量(这个网络是在图像网络上训练的,图像网络将图像分为1000个类中的一个)。

因为我们只想预测一个值,所以我们想用一个输出的新线性层来代替它:

Net.fc = torch.nn.Linear(in_features=512, out_features=1, bias=True)

公平地说,这部分是可选的,因为一个有1000个输出通道的网络只需忽略999个通道就可以预测一个值。但这样更优雅。

接下来,我们将网络加载到GPU或CPU设备中:

Net=Net.to(device)

最后,我们加载一个优化器:

optimizer=torch.optim.Adam(params=Net.parameters(),lr=Learning_Rate) # Create adam optimizer

优化器将在反向传播步骤中控制梯度速率。Adam是最快的优化器之一。

最后,我们通过加载数据开始训练,使用网络进行预测:

AverageLoss=np.zeros([50]) # Save average loss for display

for itr in range(2001): # Training loop 

   images,GTFillLevel=LoadBatch() # Load taining batch   

   images=torch.autograd.Variable(images,requires_grad=False).
   to(device)    

   GTFillLevel = torch.autograd.Variable(GTFillLevel,

   requires_grad=False).to(device)

   PredLevel=Net(images) # make prediction

首先,我们希望保存训练期间的平均损失;我们创建一个数组来存储最后50步的损失。

AverageLoss=np.zeros([50])

这将使我们能够跟踪网络的学习情况。

我们将训练2000个步骤:

for itr in range(2000):

LoadBatch在前面定义,帮助加载一批图像及其填充级别。

torch.autograd.Variable:将数据转换成网络可以使用的梯度变量。我们设置Requires_grad=False,因为我们只将梯度应用于网络的层。to(device) 将张量复制到对应的设备(GPU/CPU)。

最后,我们将图像输入网络,得到预测结果。

PredLevel=Net(images)

一旦我们做出预测,我们可以将其与实际填充水平进行比较,并计算损失。损失是图像的预测和真实填充水平之间的绝对差(L1):

Loss=torch.abs(PredLevel-GTFillLevel).mean()

请注意,我们不是将损失应用于一张图像,而是应用于批次中的多张图像,因此我们需要将损失的平均值作为单个数字。

一旦我们计算了损失,我们就可以应用反向传播并改变权重。

Loss.backward() # Backpropogate loss

Optimizer.step() # Apply gradient descent change to wei

在训练期间,我们想看看我们的平均损失是否减少,看看网络是否真的学到了什么。

因此,我们将最后50个损失值存储在一个数组中,并显示每个步骤的平均值:

AverageLoss[itr%50]=Loss.data.cpu().numpy() # Save loss average

print(itr,") Loss=",Loss.data.cpu().numpy(),
'AverageLoss',AverageLoss.mean())

这涵盖了整个训练阶段,但我们还需要保存经过训练的模型。否则,一旦程序停止,它就会丢失。

保存很费时,所以我们希望大约每200步只做一次:

if itr % 200 == 0:
         print(“Saving Model” +str(itr) + “.torch”)

  torch.save(Net.state_dict(), str(itr) + “.torch”)

在运行这个脚本大约200步之后,网络应该会给出很好的结果。

总共40行代码,不包括空格。

训练并保存网络后,可以加载网络进行预测:

https://github.com/sagieppel/Train-neural-net-to-predict-continuous-property-from-an-image-in-40-lines-of-code-with-PyTorch/blob/main/Infer.py

该脚本加载你之前训练和保存的网络,并使用它进行预测。

这里的大部分代码与训练脚本相同,只有几处不同:

Net.load_state_dict(torch.load(modelPath)) # Load trained model

从modelPath中的文件加载我们之前训练和保存的网络

#Net.eval()

将网络从训练模式转换为评估模式。这主要意味着不会计算批次标准化统计数据。

虽然使用它通常是一个好主意,但在我们的例子中,它实际上会降低准确性,因此我们将在没有它的情况下使用网络。

with torch.no_grad():

这意味着网络运行时没有收集梯度。梯度只与训练相关,收集梯度需要大量资源。

感谢阅读!


       原文标题 : 用Pytorch训练神经网络

© 版权声明

相关文章